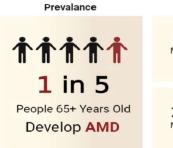

New Approaches in Age-Related Macular Degeneration and Geographic Atrophy

Sara LeMay, O.D.

Sara LeMay, O.D. Retina Associates of Kentucky Ashland, KY

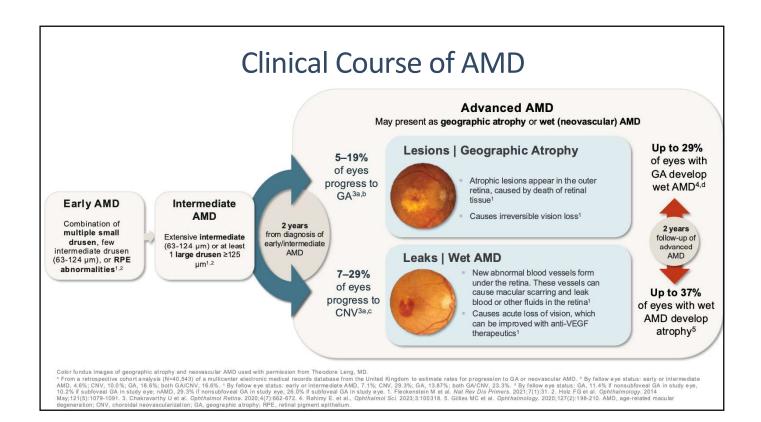
slemay@retinaky.com


Disclosure Statement: No relevant financial relationships to disclose

Prevalence and Impact

- In 2004, an estimation of 1.75 million people have advanced age-related macular degeneration (AMD) in at least one eye in the United States
- Prevalence of AMD in the United States is estimated to increase to 22 million by 2050
- * AMD is responsible for 46% of cases of severe visual loss in persons over age of 40 in the U.S.

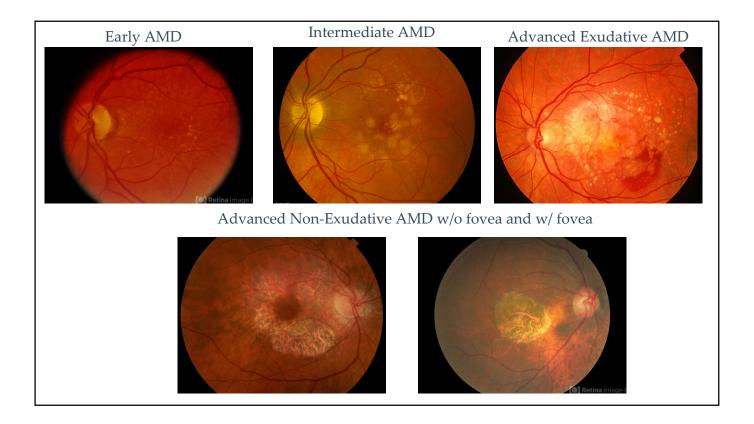
Age-Related Macular Degeneration (AMD)

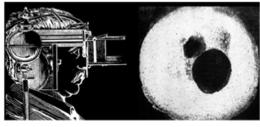


2

Risk Factors for AMD

- Age
- Cigarette smoking
- Cardiovascular disease
- Obesity
- Systemic hypertension and hypercholesterolemia


- Dietary: high fat intake/no green leafy vegetables (mediterranean diet 41% reduced risk of advanced AMD)
- Genetic: Complement Factor H (CFH) and ARMS2 (homozygous for the Y402H risk allele of CFH possess a 7.4 fold increased risk of AMD)
- Data regarding omega-3 polyunsaturated fatty acids, degree of sunlight exposure and levels of ocular melanin are conflicting


SL

AMD Classification

AREDS Categories					
No AMD	None or a few small drusen ≤ 63 µm, no AMD pigmentary abnormalities				
Early AMD (category 2)	Small drusen (<63), Medium drusen 63-124 µm, and/or minimal pigmentary abnormalities				
Intermediate AMD (category 3)	Extensive mediums (63-124) or 1 or more large drusen ≥125 µm				
Advanced AMD (category 4)	Geographic atrophy or neovascular AMD				

Imaging Options

- * Optical Coherence Tomography (OCT) defines the cross-sectional architecture of the retina. Detecting subretinal and intraretinal fluid and degree of thickening. SD-OCT and swept-source
- * Color Fundus Photography- can be used as a baseline for landmarks
- * Fluorescein Angiography- detect the presence and determine the type, size and location of choroidal neovascularization. Risks involved: pain, tissue infiltration, allergic reactions including anaphylaxis.
- * OCT-Angiography- provides noninvasive evaluation of the retinal and choroidal vasculature
- * Fundus Autofluorescence- detect geographic atrophy and quantify lipofuscin in the RPE

Normal OCT

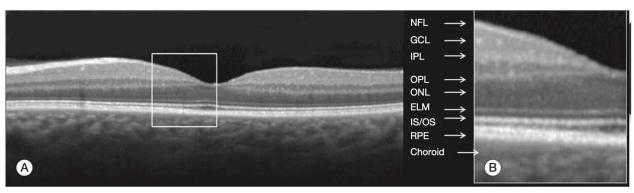
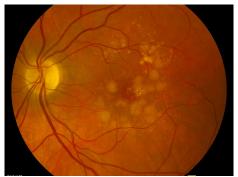
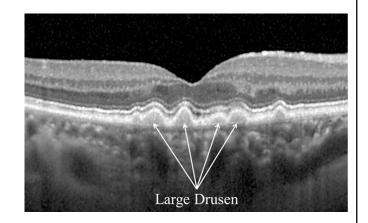
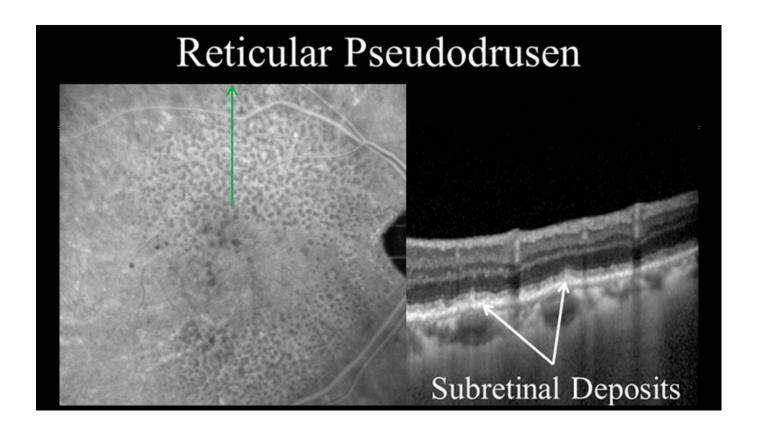



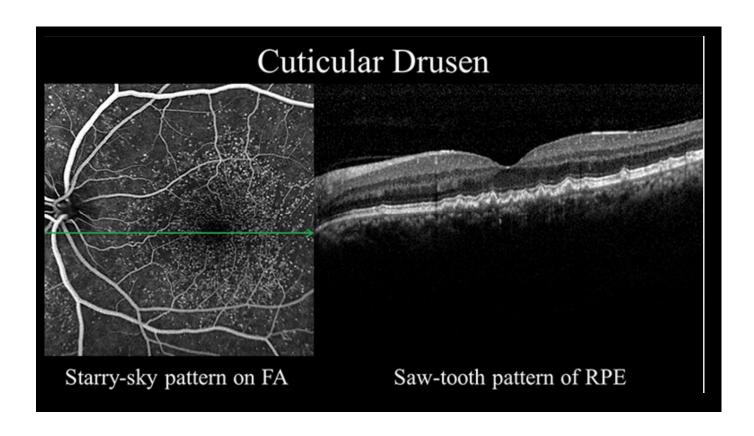

Fig. 3.7 Spectral domain optical coherence tomography (Spectralis, Heidelberg) image of a normal individual. The multilayered retinal architecture can be observed and each retinal layer can be identified. NFL, nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer; OPL, outer plexiform layer; ONL, outer nuclear layer; ELM, external limiting membrane; IS/OS, junction of the inner and outer segments of the photoreceptors; RPE, retinal pigment epithelium.

Filho, Carlos. Optical Coherence Tomography, Editors: Ryan, Stephen et al. Retina (5th Edition). W.B. Saunders. 2013. Page 86

Drusen

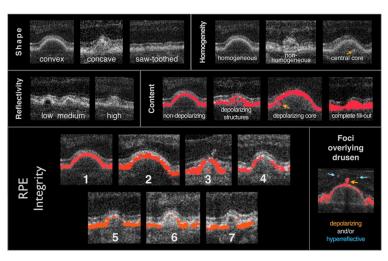

- Focal yellow or white deposits of extracellular material between the RPE and Bruch's membrane
- Diffuse thickening of the inner aspect of Bruch's membrane
- Hallmark sign of non-neovascular
 AMD





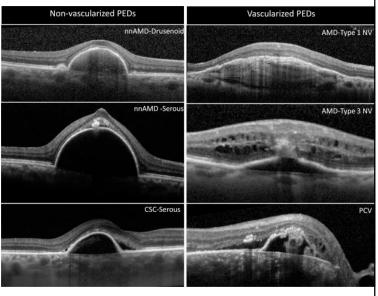
Different Types of Drusen

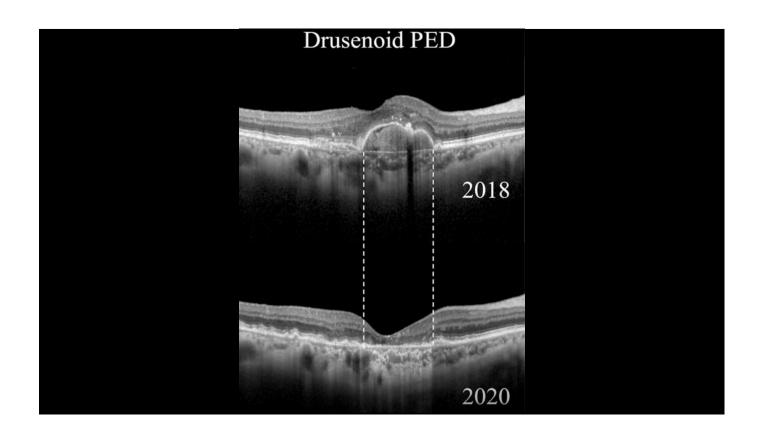
- Hard Drusen- yellow-white deposits with distinct borders at the level of Bruch's membrane
- Soft Drusen- larger yellow-white dome-shaped mounds of deposits with indistinct borders under the RPE
- * Basal laminar/cuticular (sawtooth)- yellow-white punctate accumulations under the RPE. Gives a "stars in the sky" appearance on FA. Spheroid or triangular shape on OCT
- * Reticular pseudodrusen (sub retinal drusenoid deposits above the RPE)- light gray accumulations ABOVE the RPE on OCT **High risk for advanced AMD development**



Drusen Phenotypes/High Risk Features

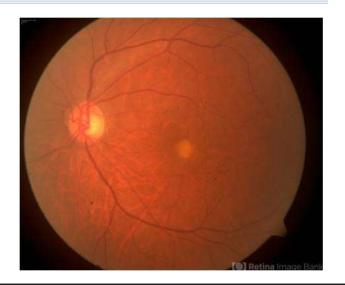
- Homogenous, uniform, medium reflectivity less risk of advanced AMD
- Hyper and hypo or non-uniform=high risk
- Hyperreflective foci=high risk.
 Represent RPE compromise

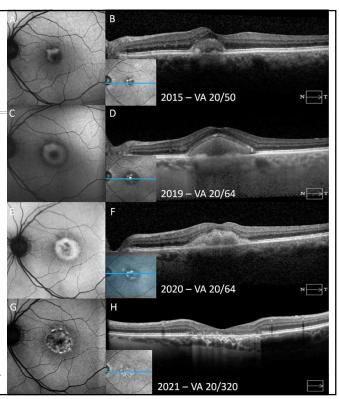



Schlanitz F, Baumann B, Sacu S, et al. Br J Ophthalmol 2019;103:227–232.

Pigment Epithelial Detachment (PED)

- Separation of RPE from the underlying Bruch's menorane (drusenoid, serous, vascularized)
- Drusenoid PED-well circumscribed yellow elevations of RPE, 350 μm in size
- Serous PED-clear or yellow-orange circular elevations of RPE. Occur commonly in central serous chorioretinopathy. In AMD, typically associated with neovascular AMD
- PEDs are found in 62% of eyes with advanced AMD*

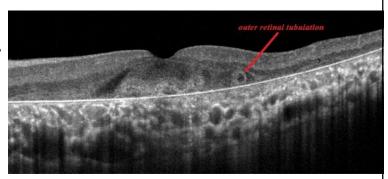

*Coscas F, Coscas G, Souied E, Tick S, Soubrane G. Optical coherence tomography identification of occult choroidal neovascularization in agerelated macular degeneration. Am J Ophthalmol. 2007;144:592-599.


Acquired Vitelliform Lesions

- Accumulations of yellow material in the sub retinal space
- Hyperautofluorescence on autofluorescence
- Material contains lipofuscin, melanofuscin granules in macrophages, and extracellular material derived from outer segment discs
- ❖ Due to RPE dysfunction
- SD-OCT, the vitelliform lesion corresponds to the dome shaped subretinal hyper reflective material (SHRM) between RPE and ellipsoid zone

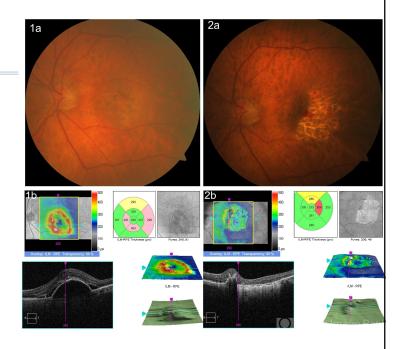
Natural Course of Acquired Vitelliform Lesions

- Highly variable
- Varying degrees of RPE attenuation/loss, thinning of outer nuclear layer
- 4 stages: Vitelliform, pseudohypopyon, vitelliruptive, atrophic


Nipp GE, Lee T, Sarici K, Malek G and Hadriahrestoric M (2023) Adult-enset forcomacular vitellifeem dystrophy: epidemiology, pathophysiology, imaging, and prognosis

9

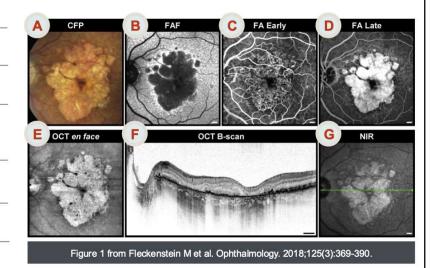
	1. Vitelliform	2. Pseudohypopyon	3. Vitelliruptive	4. Atrophic				
Color Fundus Photography	"Egg-yolk" appearance Lesion is yellowish-white, rounded, regular in shape, centered on fovea (3)	Unchanged as compared to vitelliform stage (43)	"Scrambled egg" appearance Yellowish lesion appears to break apart, is less regular in shape (43)	Visible choroidal blood vessels Pale fundus (44)				
Fundus Autofluorescence	Entire lesion is hyperautofluorescent (13)	Hyperautofluorescent inferior half, hypoautofluorescent superior half (45)	Hypoauto-fluorescent (45, 46)	Hypoauto-fluorscent (45, 46)				
Fluorescein Angiography	Non-fluorescent central spot in lesion Hyperfluorescent spoked ring around lesion (3, 10, 13, 47)	Less hyperfluorescent "Stars-in-the-sky" appearance (48)	Persistent hyper-fluorescence "Stars-in-the-sky" appearance (48)	Late-stage hyperfluorescence of atrophic area (44)				
	Intrales	Intralesional cuticular Drusen at RPE/Bruch's membrane complex is common Subretinal drusenoid deposits Disruption of the ellipsoid zone						
Spectral Domain Optical Coherence Tomography	Dome-shaped homogeneous SHRM (10, 16, 43)	Two zones of the vitelliform lesion (43). * Upper zone is hyporeflective with a few clumps of SHRM * Lower zone features homogenous SHRM Normal overlying retina * Intraretinal pseudocysts may be present	Fragmented vitelliform lesion with mix of hyper- and hyporeflective spaces with overlying photoreceptor loss (16) As lesion progresses, SHRM may "clump" and resolve along RPE layer (43).	Widespread loss of photoreceptor layers and RPE atrophy. Corresponds with cRORA definition (44)				
	Increased	present Increased subfoveal choroidal thickness, particularly as compared to AMD patients						
Optical Coherence Tomography Angiography	Reduced blood flow in superficial and deep choroid plexus in areas corresponding to lesion (19, 49, 50) Reduction in apparent choriocapillaris vessel density (19, 49, 51, 52)	Reduced blood flow in superficial and deep choroid plexus in areas corresponding to lesion (19, 49, 50) Reduction in apparent choriocapillaris vessel density (19, 49, 51, 52)	Increased choriocapillaris vessel density (19)	Increased choriocapillaris vessel density (19)				


Outer Retinal Tubulation (ORT)

- Distinct OCT finding of thick hyperreflective band surrounding a hypo reflective cavity located within the ONL
- Common in advanced AMD
- Overlying areas of degenerate or absent RPE
- Can be mistaken for cystic fluid

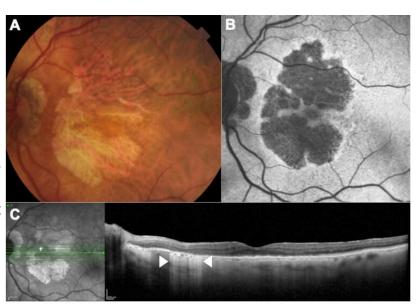
RPE Tear

- Fairly common occurrence in PED associated with type 1 (occult) CNV
- CNV can spontaneously contract after treatment putting traction on RPE
- * RPE scrolls and retracts



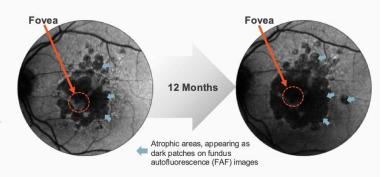
Geographic Atrophy (GA)

- Early classifications used CFP to define GA as sharply delineated round areas of depigmentation with increased visibility of choriodal vessels of at least 175 μm
- Denotes areas of RPE and choriocapillaris loss
- The definition is being revised to include SD-OCT and fundus autofluorescence
- Areas of RPE loss appear hypoautofluorescent and show a margin of hyperautofluorescence that indicate cells at risk
- GA may be preceded by reticular pseudodrusen or may follow regression of large drusen, PED, or acquired vitilleform lesion


Imaging Geographic Atrophy (GA)

- A: Color fundus photography
- B: Fundus autofluorescence
- **C-D:** Fluorescein angiography (over course of exam)
- E-F: Optical coherence tomography
- G: Near-infrared reflectance

1. Fleckenstein M et al. Ophthalmology. 2018;125(3):369-390. CFP, color fundus photography; FA, fluorescein angiography; FAF, fundus autofluorescence; GA, geographic atrophy; NIR, near-infrared reflectance; OCT, optical coherence tomography.


- CFP: Areas of RPE hypopigmentation with sharply demarcated border and visible choroidal vasculature
- Autofluorescence:
 hypoautofluorescence due to loss of
 RPE cells with ring of
 hyperautofluorescence surrounding
 atrophic regions
- SD-OCT: marked choroidal hypertransmission in the area of outer retinal and RPE atrophy

Su, D. Geographic Atrophy Treatments In the Pipeline 2022 https://www.ophthalmologyadvisor.com/slideshow/ret ina-vitreous/potential-therapies-for-geographicatrophy-in-amd/

Geographic Atrophy Progression

- Atrophic regions within the retinal pigment epithelium typically begin in the perifoveal region and expand to involve the fovea1
- Mean GA lesion growth rates range from 0.53 to 2.6 mm²/year (median ≈1.78 mm²/year) across studies of GA¹
- The median time from first diagnosis of GA to central GA was 2.5 years in a large, prospective study of persons with AMD²

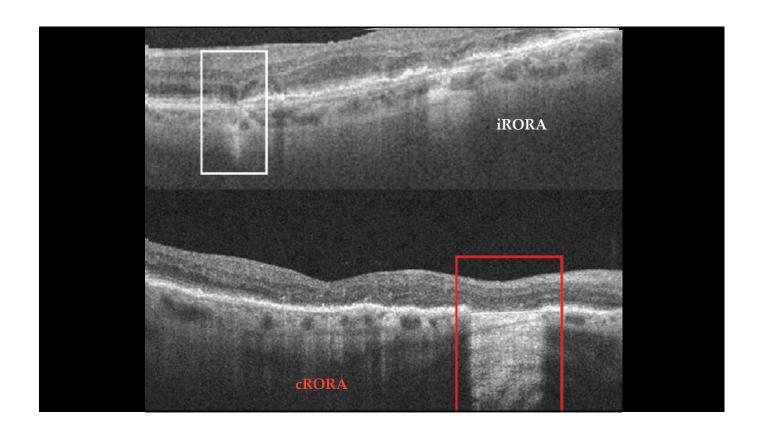
Classification of Atrophy Meeting (CAM)

- CAM defines a classification system and criteria for OCTdefined atrophy
- Recognized that photoreceptor atrophy can occur without RPE atrophy
- Provided consistent definitions for future studies

• Hypertransmission region ≥250 µm · Absence of RPE ≥250 µm • Overlying photoreceptor degeneration No RPF teat Incomplete RPE and outer retinal atrophy (iRORA) · Inhomogeneous hypertransmission region • Interrupted RPE · Overlying photoreceptor degeneration · No RPE tear Complete outer retinal atrophy (cORA) · Absence of ELM, EZ, and IZ Severe thining of the outer retina Intermittent hypertransmission region

Incomplete outer retinal atrophy (iORA)

Complete RPE and outer retinal atrophy (cRORA)


· Intact RPE • Continuous ELM · Intermittent EZ disruption

· Absence of IZ • SDD

· Detectable thinning of the outer retina · No hypertransmission region

2. Guymer, Robyn H et al. Incomplete Retinal Pigment Epithelial and Outer Retinal Atrophy in Age-Related Macular Degeneration: Classification of Atrophy Meeting Report 4. Ophtholmology vol. 127,3 (2020):349-409.

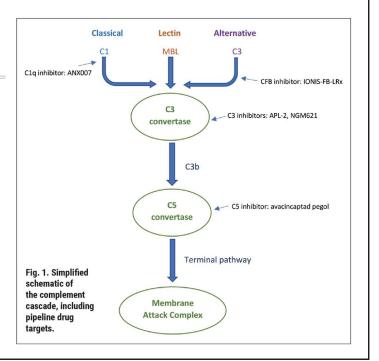
3. Sadda, Srinivas R et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3.

Non-Exudative AMD Management Options

- AREDS II supplements
- Amsler grid and/or Foresee home device
- Intravitreal injections of complement inhibitors for geographic atrophy

AREDS/AREDS II

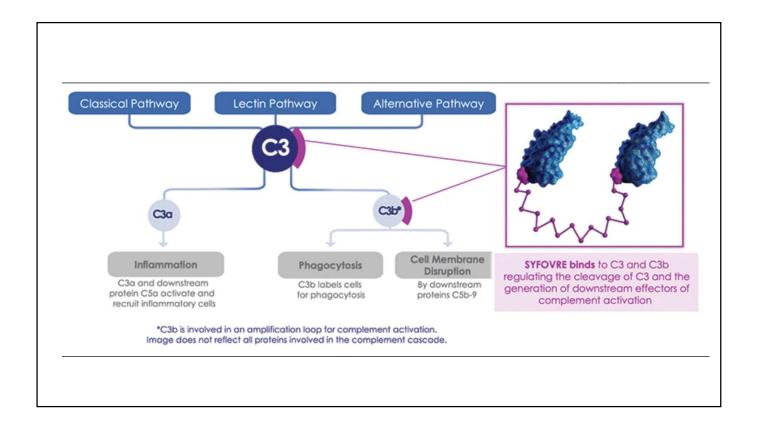
- * Early AMD- No evidence to support the use of supplements
- Intermediate AMD or advanced AMD in one eye- benefited from antioxidant vitamins with zinc and copper
- The rate of development of advanced AMD at 5 years was reduced 25% with AREDS (2001)
- AREDS II found that replacing beta-carotene with lutein and zeaxanthin improved efficacy


Foresee Home Device

- Teleconnected home based monitoring detects early vision changes
- Uses preferential hyperacuity perimetry (vernier acuity)
- Candidates are patients with intermediate non-exudative AMD OD, OS, or OU
- "SCANLY" Notal Home OCT FDA authorized

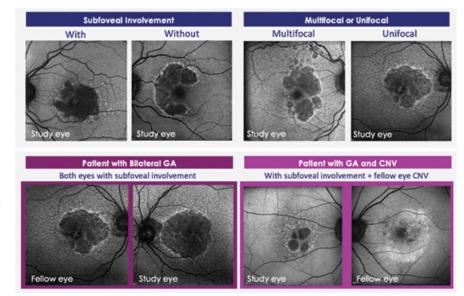
Pathophysiology of Geographic Atrophy

- Due to oxidative stress, genetic predisposition and environment there is a complement deposition between RPE and Bruch's membrane.
- Leads to a loss of complement regulation
- Overactivation of complement system is the problem
- MAC leads to apoptosis of retinal cells

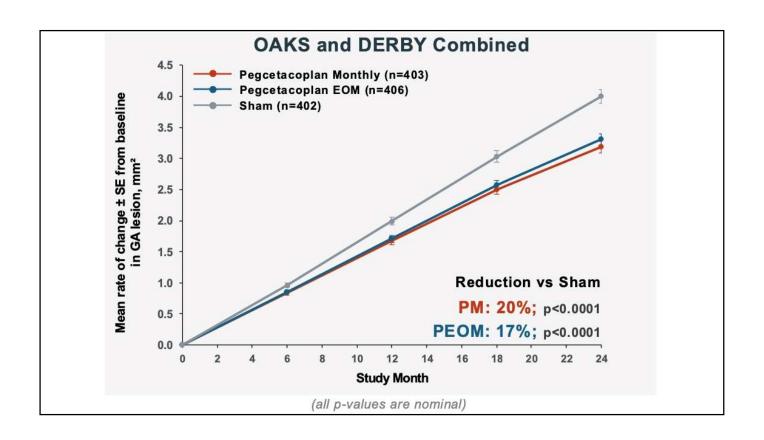


FDA Approved Geographic Atrophy Drugs

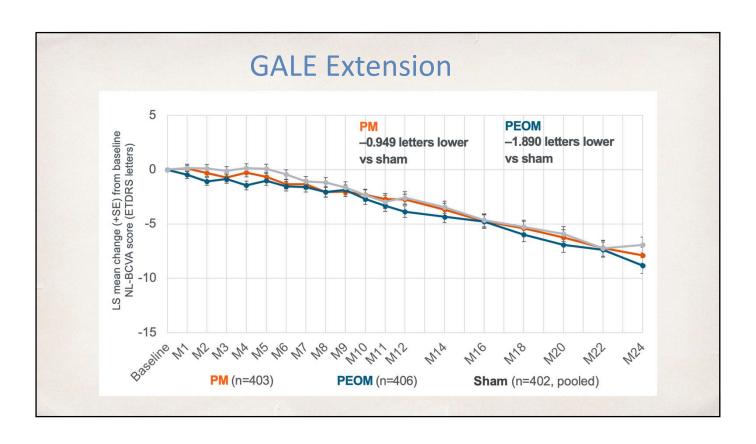
- Syfovre-pegcetacoplan/Apellis Targets C3
- Izervay- avacincaptad pegol/Astellas—Targets C5

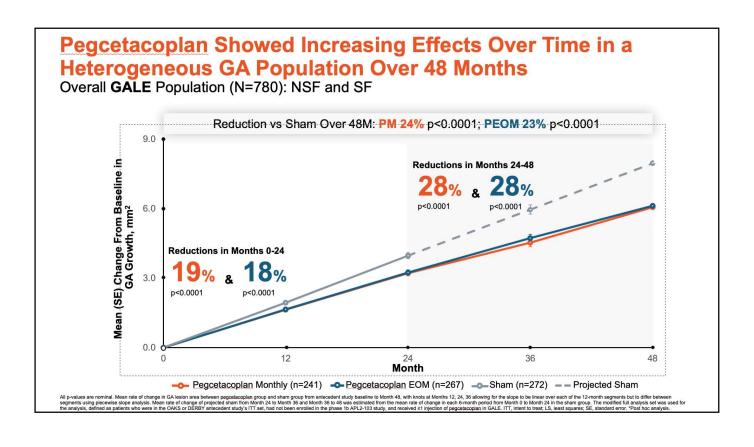

Syfovre

- * 24 month OAKS and Derby studies- rate of GA lesion growth reduced compared to sham
- * Studied subfoveal versus without subfoveal involvement
- Extrafoveal lesions responded better
- ❖ FDA approved on February 17, 2023
- GALE extension study

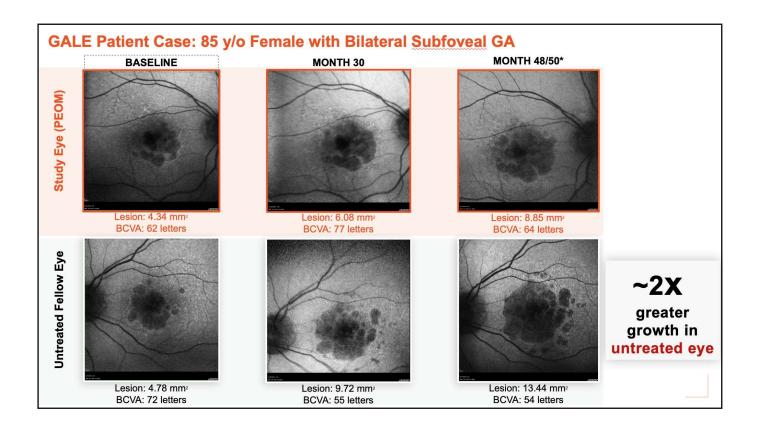

Key Inclusion Criteria

- GA lesion requirements:
 - Total size:
 - 2.5 mm² to 17.5 mm²
 - With and without subfoveal lesion involvement
 - If multifocal, ≥1 focal lesion ≥1.25 mm² (0.5 DA)
 - Presence of perilesional hyperautofluorescence
 - GA, CNV, or both were permitted in the fellow eye
- Age ≥60 years
- BCVA ≥24 letters using ETDRS charts in study eye

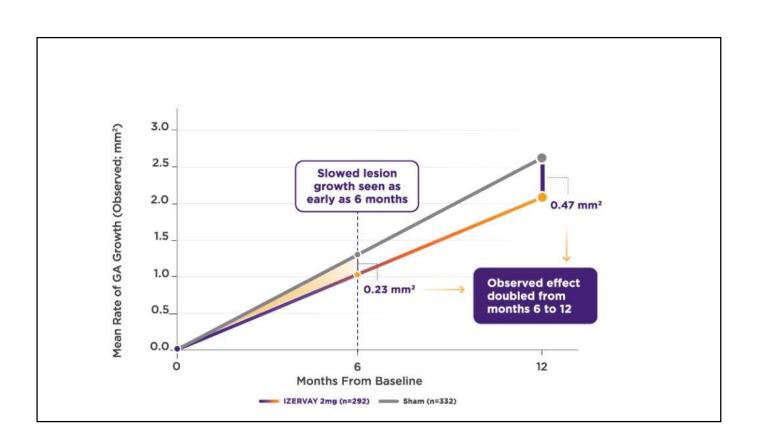


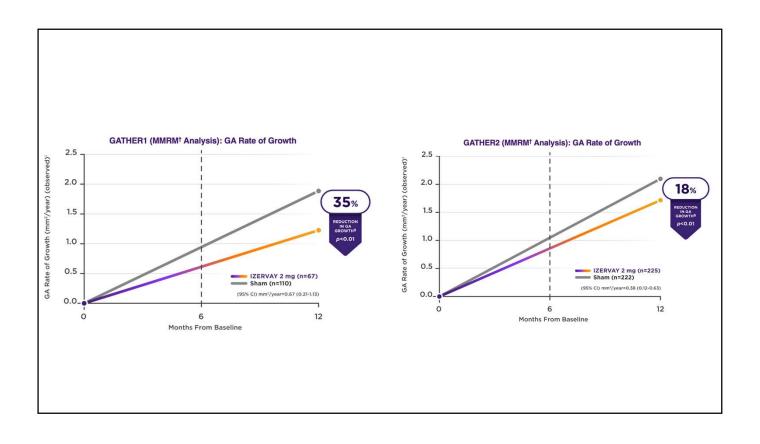

Images are for illustration purposes only.


CNV=choroidal neovascularization. DA=disk area; ETDRS=Early Treatment Diabetic Retinopathy Study.

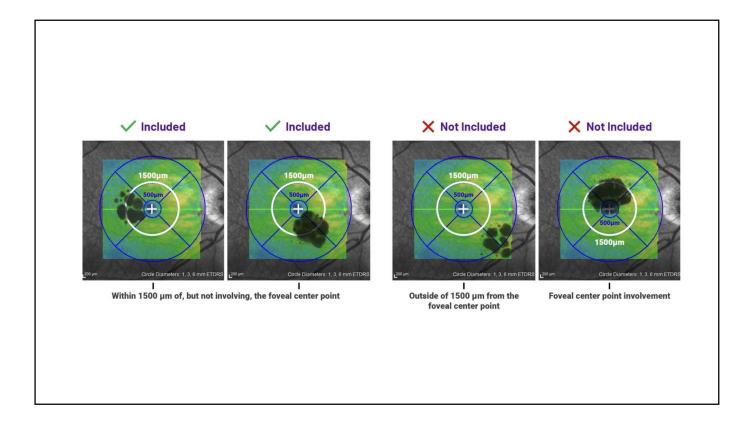


GALE ^a Months 24-48	PM to PM (n=250)	SM to PM (n=129)	PEOM to PEOM (n=268)	SEOM to PEOM (n=143)	
AEs in study eye reported in ≥2% of	patients, %				 Rates from OAKS, DERBY &
Exudative AMDa	13.9%	8.1%	4.8%	6.5%	GALE Months 0-48:
Intraocular pressure increased	8.8%	8.5%	7.5%	2.8%	
Vitreous floaters	6.4%	10.9%	3.0%	7.0%	- Infectious endophthalmitis:
Conjunctival hemorrhage	5.2%	10.1%	3.4%	6.3%	0.04% per injection
Ocular discomforta	5.6%	7.0%	3.7%	7.0%	ION: 0.04% per injection
Cataract	7.2%	4.7%	3.4%	4.9%	 IQIa: 0.26% per injection
Retinal hemorrhage	5.2%	5.4%	2.6%	2.1%	
					No study events of occlusive or
AEs of interest in study eye, patient	(%) events				non-occlusive retinitis or
Infectious endophthalmitis	3 (1.2%)	1 (0.8%)	1 (0.4%)	0	vasculitis
Intraocular inflammationa	12 (4.8%)	6 (4.7%)	3 (1.1%)	2 (1.4%)	
Ischemic optic neuropathy	1 (0.4%)	0	0	1 (0.7%)	


Retinal Vasculitis Reports


- 12,000 injections were given in Derby/Oaks with no cases of vasculitis
- Upon introduction in the real world, there were rare and sporadic reports of vasculitis post Syfovre injection
- Appelis issued a field correction of changing a 19g filter needle to draw up medication
- All adverse events were reported after first injection

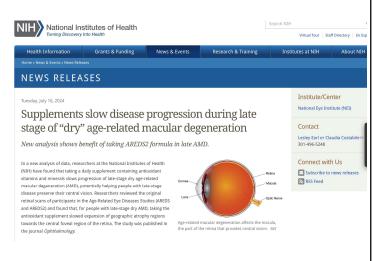
Injection Month	Classification	Days to Visual Symptoms	Pre-Event VA	VA at Event	Most Recent Reported VA	Visual Outcome
May	Suspected Non- Occlusive vasculitis	10	20/70 (OD) 20/100 (OS)	CF (OD); 20/800 (OS)	20/60 (OD) 20/80 (OS)	Return to baseline vision
May	Occlusive Vasculitis	18	20/150	20/150	20/150	Return to baseline vision
June	Non-Occlusive Vasculitis	14	20/60	20/200	20/50	Return to baseline vision
April	Occlusive Vasculitis	11	20/200	20/400	20/400	Partial recovery*
May	Non-Occlusive Vasculitis	12	OD: 20/30 OS: 20/30	20/200 OU	20/70 OU	Partial recovery
May	Occlusive Vasculitis	15	20/30	20/400	20/100	Partial recovery
August	Suspected Occlusive Vasculitis	11	20/50	20/350	20/250	Partial recovery (ongoing)
April	Occlusive Vasculitis	10	20/40	НМ	LP	Visual impairment
June	Non-Occlusive Vasculitis	8	20/150	НМ	LP	Visual impairment
June	Occlusive Vasculitis	10	20/100	20/400	LP**	Visual impairment
		Table (of events is as of Aug	gust 22, 2023	сса оу инс риуэнский	


Izervay-avacincaptad peg

- * GATHER1/GATHER 2 studies- reduction in the rate of GA growth over 12 month period with injections given monthly versus sham
- C5 inhibitor
- Excluded foveal center involving GA

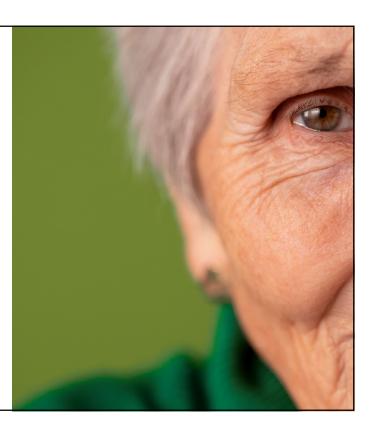
Common ocular adverse reactions (≥2%) and greater than sham in study eye through Month 12¹	IZERVAY (n=292)	Sham (n=332)
Conjunctival hemorrhage	13%	9%
Intraocular pressure (IOP)	9%	1%
Blurred vision* 👴	8%	5%
Choroidal neovascularization (CNV) 😉	7%	4%
Eye pain	4%	3%
Vitreous floaters	2%	<1%
Blepharitis	2%	<1%

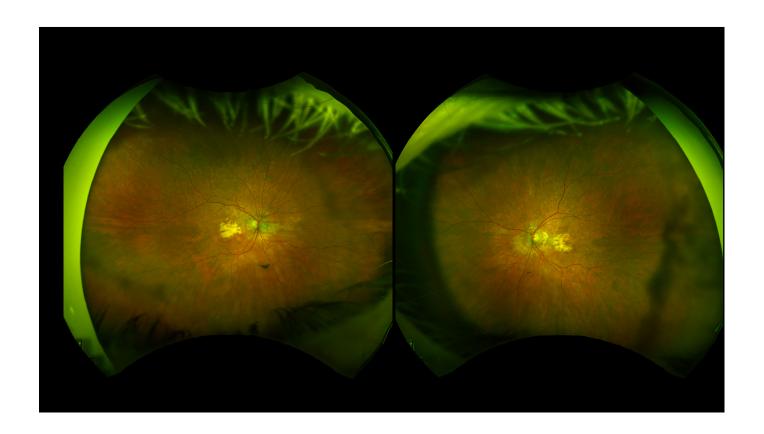
Impact of GA on vision

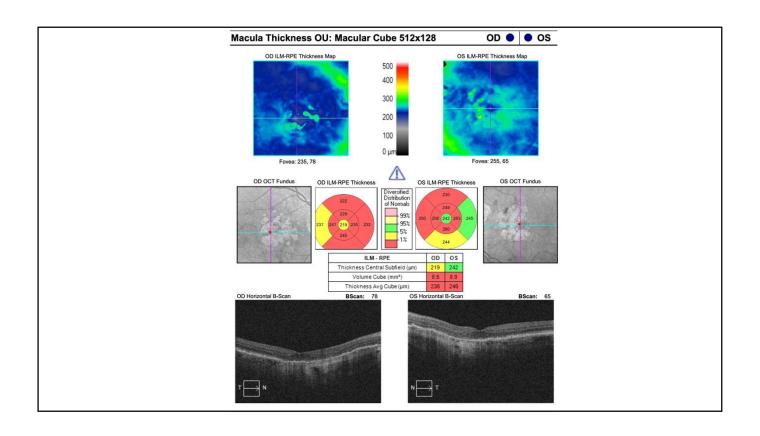

- * Average time since diagnosis of GA, in as few as 2.5 years GA can lead to irreversible vision loss
- ❖ GA progression is different for each person
- Extrafoveal GA grows faster than foveal

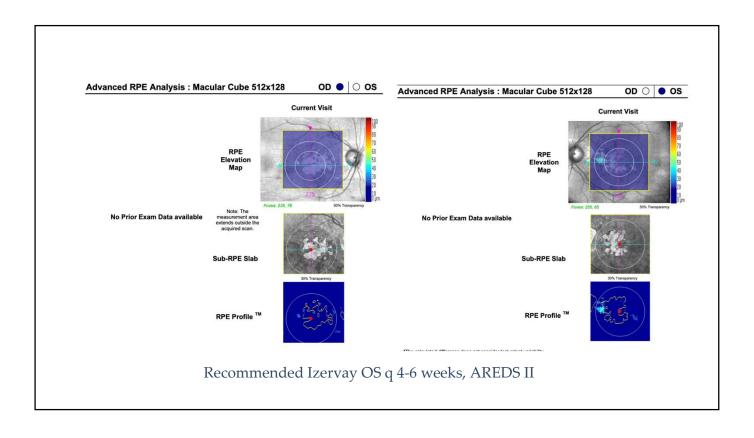
Identifying a Good Candidate

- Extrafoveal GA is desired-goal is to preserve fovea as long as possible
- Discuss with patient in length that therapy is preventative and will not reverse geographic atrophy
- Disease will progress (not 100% effective)


What about AREDS/AREDS II and GA?


- National Institute of Health reviewed scans from late stage dry-AMD in AREDS/AREDSII
- Geographic atrophy that is far away from fovea AREDS/AREDS II slowed the progression of growth towards the fovea by 55% over 3 years
- "Foveal-sparing"




Case 1

- 79 year old caucasian female with history of ARMD
- ❖ Distance BCVA OD: 02/200 OS: 20/25
- ❖ Ocular SX: cataract extraction OU
- Medications: Aspirin 81 mg

Future Therapeutic Options for GA

- Gene therapy-trials currently investigating complement cascade inhibition and enhancing regulatory proteins
 - HMR59/Hemera Biosciences and Janssen Pharmaceuticals- intravitreal injection that augments expression of CD59 that prevents formation of MAC-withdrawn in phase 2
 - ❖ GT005/Gyroscope Therapeutics and Novartis-recombinant adenoidsassociated viral vector encoding Complement Factor I (CFI) which keeps complement in check. EXPLORE/HORIZON was a subretinal injectionboth phase 2 trials terminated in 06/2024. ORACLE phase 2 study estimated completion is 2028

Future GA Treatment

- * Stem cell therapy-OpRegen subretinally transplanted RPE cells from human embryonic stem cells (NCT013449993)
- Neuroprotective agents- Brimonidine intravitreal injection or implant (BEACON) Brimonidine stimulates upregulation of ganglion cells and survival cells to release brain-derived neurotrophic factor (BDNF) NCT 00658619-completed with results.

Thank you!		